B.A/B.Sc. ${ }^{\text {st }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH1CC01
 (Calculus, Geometry and Differential Equation)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:

$$
5 \times 6=30
$$

(a) (i) Find the points of inflection on the curve $y=(\log x)^{3}$.
(ii) Suppose you own a rare book whose value is modeled as $300 e^{\sqrt{3 t}}$ after t years from now. If the prevailing rate of interest remains constant at 8% compounded annually, when will be most advantageous time to sell it?
(b) (i) Trace the curve $r=a \sin 3 \theta$.
(ii) Evaluate $\frac{d}{d x}\left(\tanh ^{-1} x\right)$ for $x<1$.
(c) (i) If $I_{n}=\int \frac{\operatorname{sinn} \theta}{\sin \theta} d \theta$ then prove that $(n-1)\left(I_{n}-I_{n-2}\right)=2 \sin (n-1) \theta$.
(ii) Obtain a reduction formula for $\int \sec ^{n} \theta d \theta$ for positive integral values of $n>1$.
(d) Find the surface area of the solid generated by revolving the astroid
$x=\operatorname{acos}^{3} \theta, y=\operatorname{asin}^{3} \theta$ from $\theta=0$ to $\theta=\frac{\pi}{2}$ about the x-axis.
(e) (i) What does the equation $11 x^{2}+16 x y-y^{2}=0$ become on turning the axes through an angle $\tan ^{-1}\left(\frac{1}{2}\right)$?
(ii) Show that the triangle formed by the pole and the points of intersection of the circle $r=4 \cos \theta$ with the line $r \cos \theta=3$ is an equilateral triangle.
(f) (i) Obtain the equation of the cylinder whose guiding curve is $2 x^{2}+3 y^{2}-2 x y+4 x+6 y=10, z=0$ and whose generators are parallel to a fixed line with direction ratios l, m, n.
(ii) Show that the quadric surface given by the following equation is an ellipsoid $2 x^{2}+5 y^{2}+3 z^{2}-4 x+20 y-6 z-5=0$. Find its centre.
(g) (i) A differential equation $5 \frac{d x}{d t}-x=0$ is applicable over $|t|<10$. If $x(4)=10$, find $x(-5)$.
(ii) Find the integrating factor for the following differential equation:
$y(1+x y) d x-x d y=0$.
(h) (i) Solve: $\frac{d y}{d x}+\frac{y}{1+x^{2}}=\frac{e^{\tan -1} x}{1+x^{2}}$.
(ii) Find the equation of the curve whose slope at any point is equal to $(x+y+1)^{-1}$ and passes through the point $(1,0)$.

2. Answer any three questions:

(a) (i)

Find a and b such that $\lim _{x \rightarrow 0} \frac{a e^{x}+b e^{-x}+2 \sin x}{\sin x+x \cos x}=2$.
(ii) Find the envelope of the family of circles described on $O P$ as diameter where O is the origin and P is a point on the curve $x y=a^{2}$.
(iii) Find all the asymptotes of $x^{3}-2 x^{2} y+x y^{2}+x^{2}-x y+2=0$.
(b) (i) Find the perimeter of the hypo-cycloid $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$.
(ii) Prove that the surface area of the solid generated by revolving the cycloid $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ is $\frac{64}{3} \pi a^{2}$.
(iii) If $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$, prove that $(2 n+1) I_{n}=2 n I_{n-1}$.
(c) (i) A variable sphere passes through $(0,0, \pm c)$ and cut the lines $y=x, z=c$ and $y=-x, z=-c$ in points, whose mutual distance is $2 a$. Show that the centre of this sphere lies on the circle
$z=0, x^{2}+y^{2}=a^{2}-c^{2}$.
(ii) Lines are drawn through the origin to meet the circle, in which the plane $x+y+z=1$ cuts the sphere $x^{2}+y^{2}+z^{2}-4 x-6 y-8 z+4=0$. Show that they lie on the cone $x^{2}-y^{2}-3 z^{2}-6 y z-4 z x-2 x y=0$ and meet the sphere again at points on the plain $y+2 z-2=0$.
(iii) Find the equations of the generators to the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ which pass through the point $(a \cos \alpha, b \sin \alpha, 0)$.
(d) (i) Solve: $y^{2} \frac{d y}{d x}-2 \frac{y^{3}}{x}=2 x^{2}$, given that when $x=1, y=1$.
(ii) Solve: $y^{2} \log y=x y p+p^{2}, p \equiv \frac{d y}{d x}$.
(iii) By the substitution $x^{2}=u, y-x=v$ reduce the differential equation
$x p^{2}-2 y p+x+2 y=0$ to Clairaut's form and find its singular solution, if any.
(e) (i) If $y=\left(\sin ^{-1} x\right)^{2}$ then show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0
$$

(ii) Determine the length of the cissoid $r=2 \operatorname{atan} \theta \sin \theta$ from $\theta=0$ to $\theta=\frac{\pi}{4}$
(iii) Determine the nature of the conic $x^{2}+9 y^{2}+6 x y+3 x+6 y-4=0$.

